Files
artloglaby/java/org/artisanlogiciel/games/LabyModel.java
philippe lhardy 0f1a15916c move Display in gui package
- and some code indentation
2020-10-11 15:30:28 +02:00

936 lines
32 KiB
Java

package org.artisanlogiciel.games;
import java.io.*;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Random;
/**
* Model of labyrinth storing only paths not walls. wall are regenerated later
* on based on adjacent paths. each position (x,y) stores what move can be done
* from here to go to deeper path. a node is tagged OPEN and contained in
* openList if all moves from its position have not been resolved a node is
* tagged CLOSED when fully processed
**/
public class LabyModel implements WallsProvider {
/**
* WARNING don't change those values, they are used as it is for
* optimisation
*/
private final static short FLAGLENGTH = 7;
private final static short CLEAR = 0; // mandatory 0 since array creation is
// initialized with 0.
public final static short HORIZONTAL = 1;
public final static short VERTICAL = 2;
public final static short DIRECTION = 4; // could we get rid of that to
// free one bit for other purpose
// ?
// can be both POSITIVE and NEGATIVE, it means that you can move in positive direction and in negative direction.
public final static short POSITIVE = 8;
public final static short NEGATIVE = 16;
// can it be both OPEN and CLOSED ?
private final static short OPEN = 32; // can be reused once generation is
// completed
private final static short CLOSED = 64; // can be reused once generation is
// completed
public final static short LEFT = Brick.LEFT << FLAGLENGTH | DIRECTION | HORIZONTAL | NEGATIVE;
public final static short DOWN = Brick.DOWN << FLAGLENGTH | DIRECTION | VERTICAL | POSITIVE;
public final static short RIGHT = Brick.RIGHT << FLAGLENGTH | DIRECTION | HORIZONTAL | POSITIVE;
public final static short UP = Brick.UP << FLAGLENGTH | DIRECTION | VERTICAL | NEGATIVE;
// flag when a wall should be open to access this for entry
public final static short ENTRY = Brick.ENTRY << FLAGLENGTH;
// flag when a wall should be open to access this for exit
private final static short GOAL = Brick.GOAL << FLAGLENGTH;
// flag when solution is on this path.
public final static short SOLVED = 64 << FLAGLENGTH;
// free flag
private final static short FREE = 128 << FLAGLENGTH;
// remains 2 free bits ( keep one out for sign )
// orders matters see getReverseDirection
private static final short[] AllDirections = {LEFT, DOWN, RIGHT, UP};
private int width;
private int height;
// wall flags Brick.(LEFT,DOWN,RIGHT,UP,ENTRY,GOAL) + status flags for each position (x,y)
private short[][] t;
private int depth = 0;
/**
* will enforce maxdepth as maximum length of path in depth first. It means
* that after every maxdepth moves there should be crossing paths. I think
* that to shorter maxdepth is the harder the labyrinth is ...
**/
private int maxdepth = 0;
// longest path found
private int deepest = 0;
// each move is a linearwork step
private int linearwork = 0;
private Position deepestEnd = null;
boolean maxreached = false;
java.util.Random random;
// list of positions not fully walked
private final LinkedList<Position> openList = new LinkedList<Position>();
// list of entries and exits.
private final LinkedList<Position> entryExits = new LinkedList<Position>();
private final Object coherentLock = new Object(); // before getting the lock
// and after lock release
// all is coherent ( ie
// check() is ok ),
MazeCreationListener listener = null;
private LabyModel(int width, int height, int maxdepth, Random random) {
this.width = width;
this.height = height;
this.maxdepth = maxdepth;
this.random = random;
// CLEAR == 0 and array is initialized with 0s
t = new short[width][height];
}
public LabyModel(MazeParams params) {
this(params.getWidth(), params.getHeight(), params.getMaxDepth(), new java.util.Random(params.getSeed()));
}
/**
* construct LabyModel from an InputStream, yet only "raw" is supported
**/
public LabyModel(String pFormat, InputStream pIn) throws IOException {
parseInputStream(pFormat, pIn);
}
public void setMazeListener(MazeCreationListener listener) {
this.listener = listener;
}
// FIXME FULLY BREAK RESOLVING...
public void noWalls(int x, int y) {
if ((x >= 0) && (x < width) && (y >= 0) && (y < height)) {
// t[x][y] |= DIRECTION | VERTICAL | POSITIVE | HORIZONTAL | NEGATIVE | LEFT | RIGHT | UP | DOWN;
t[x][y] |= LEFT | RIGHT | UP | DOWN;
}
}
/* set direction existing onee are lost */
// FIXME FULLY BREAK RESOLVING...
public void setDirection(int x, int y, short path) {
if ((x >= 0) && (x < width) && (y >= 0) && (y < height)) {
t[x][y] = (short) (path | OPEN);
}
}
/**
* add a new direction, exiting ones are kept
*/
// FIXME FULLY BREAK RESOLVING...
public void addDirection(int x, int y, short path) {
if ((x >= 0) && (x < width) && (y >= 0) && (y < height)) {
t[x][y] |= (short) (path | OPEN);
}
}
// entry and exit can be outside the model boundaries a one x or one y out.
public boolean addEntryOrExit(int x, int y) {
entryExits.add(new Position(x, y));
if ((x > 0) && (x < width) && (y > 0) && (y < height)) {
t[x][y] |= ENTRY;
}
return true;
}
public void debugOut() {
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
out4XY(x, y);
}
System.out.print('\n');
}
}
public void out4XY(int x, int y) {
int direction = t[x][y];
if ((direction & OPEN) == OPEN) {
System.out.print("?");
} else if ((direction & CLOSED) == CLOSED) {
System.out.print(".");
} else {
System.out.print(" ");
}
// don't display information about short.
direction &= ~OPEN;
direction &= ~GOAL;
direction &= ~CLOSED;
switch (direction) {
case LEFT: // left
System.out.print("<-");
break;
case DOWN: // down
System.out.print("vv");
break;
case RIGHT: // right
System.out.print("->");
break;
case UP: // up
System.out.print("^^");
break;
case HORIZONTAL: // -
System.out.print("--");
break;
case VERTICAL: // |
System.out.print("||");
break;
case CLEAR:
System.out.print(" ");
break;
case CLOSED:
System.out.print("00");
break;
case RIGHT | LEFT:
System.out.print("--");
break;
case UP | DOWN:
System.out.print("||");
break;
case RIGHT | UP:
System.out.print("^>");
break;
case RIGHT | DOWN:
System.out.print("v>");
break;
case LEFT | DOWN:
System.out.print("<v");
break;
case LEFT | UP:
System.out.print("<^");
break;
case LEFT | RIGHT | UP:
System.out.print("LL");
break;
case LEFT | RIGHT | DOWN:
System.out.print("TT");
break;
case LEFT | DOWN | UP:
System.out.print("<|");
break;
case RIGHT | DOWN | UP:
System.out.print("|>");
break;
case LEFT | RIGHT | UP | DOWN:
System.out.print("++");
break;
case OPEN:
System.out.print("??");
break;
case GOAL:
System.out.print("**");
break;
default:
System.out.print("..");
}
if (((t[x][y] & RIGHT) == RIGHT) || ((x + 1 < width) && ((t[x + 1][y] & LEFT) == LEFT))) {
System.out.print("-");
} else {
System.out.print("H");
}
}
public String outHorizWall2XY(int x, int y) {
String freeway = " ";
if ((t[x][y] & SOLVED) == SOLVED) {
freeway = "*";
}
if ((x < 0) || (x > width)) {
return " H";
}
if ((y < 0) || (y >= height)) {
return "HH";
}
if (((t[x][y] & DOWN) == DOWN) || ((y + 1 < height) && ((t[x][y + 1] & UP) == UP))) {
return freeway + "H";
} else {
return "HH";
}
}
public String out2XY(int x, int y) {
// can check for entry exits.
if ((y < 0) || (y >= height) || (x < 0) || (x > width)) {
return " H";
}
String low = "";
int direction = t[x][y];
String freeway = " ";
if ((t[x][y] & SOLVED) == SOLVED) {
freeway = "*";
}
// don't display information about short.
direction &= ~OPEN;
direction &= ~GOAL;
direction &= ~CLOSED;
direction &= ~SOLVED;
switch (direction) {
case LEFT:
case DOWN:
case RIGHT:
case UP:
low = freeway;
break;
case HORIZONTAL: // -
low = " ";
break;
case VERTICAL: // |
low = " ";
break;
case CLEAR:
low = " ";
break;
case CLOSED:
low = "0";
break;
case RIGHT | LEFT:
case UP | DOWN:
case RIGHT | UP:
case RIGHT | DOWN:
case LEFT | DOWN:
case LEFT | UP:
case LEFT | RIGHT | UP:
case LEFT | RIGHT | DOWN:
case LEFT | DOWN | UP:
case RIGHT | DOWN | UP:
case LEFT | RIGHT | UP | DOWN:
low = ".";
break;
case OPEN:
low = "?";
break;
case GOAL:
low = "*";
break;
default:
low = ".";
}
for (Position exit : entryExits) {
if ((exit.getX() == x + 1) && (exit.getY() == y)) {
low = low + ">";
return low;
}
}
if (((t[x][y] & RIGHT) == RIGHT) || ((x + 1 < width) && ((t[x + 1][y] & LEFT) == LEFT))) {
low = low + freeway;
} else {
low = low + "H";
}
return low;
}
public LabyMap toLabyMap() {
synchronized (coherentLock) {
Brick[][] brickMap = new Brick[width][height];
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
brickMap[x][y] = new Brick(out2XY(x, y), outHorizWall2XY(x, y), getWalls(x, y));
}
}
return new LabyMap(brickMap, new LinkedList<Position>(entryExits));
}
}
public int getWidth() {
return this.width;
}
public int getHeight() {
return this.height;
}
public LinkedList<Position> getOpenList() {
return openList;
}
public void reset() {
depth = 0;
computeOpenList();
resetResolving();
}
public void resetResolving() {
// don't keep solved path
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
t[x][y] &= ~(SOLVED);
}
}
}
public void fullReset() {
depth = 0;
openList.clear();
maxreached = false;
deepest = 0;
deepestEnd = null;
// clear open
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
// resetCell(x,y);
t[x][y] &= ~(OPEN | SOLVED);
}
}
}
/**
* check model coherency and fix if model needed a fix it means that
* algorithm has a problem
*
* @return true if model is ok and no fix was applied.
**/
public boolean check() {
boolean check = true;
synchronized (coherentLock) {
// node in OPEN should be tagged OPEN and not CLOSED.
for (Position p : openList) {
int x = p.getX();
int y = p.getY();
if (isFlagSet(t[x][y], OPEN)) {
check = false;
t[x][y] |= OPEN;
}
if (isFlagSet(t[x][y], CLOSED)) {
check = false;
t[x][y] &= ~CLOSED;
}
}
// should do reverse : every node tagged OPEN should be in open
// list.
// a little more cpu consuming...
}
return check;
}
// coherency : if CLOSED then not OPEN
public void computeOpenList() {
openList.clear();
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
if (isFlagSet(t[x][y], CLOSED)) {
t[x][y] &= ~OPEN;
}
if (isFlagSet(t[x][y], OPEN) || (t[x][y] == CLEAR)) {
openList.add(new Position(x, y));
}
}
}
}
/**
* This is core of generator.
* <p>
* generate a maze with an entry set at (x,y) with a maxdepth
**/
public void generateWithEntry(int x, int y) {
openList.add(new Position(x, y));
while (!openList.isEmpty()) {
// this is where magic happens
step();
synchronized (coherentLock) {
linearwork++;
if (linearwork % maxdepth == 0) {
coherentLock.notifyAll();
if (listener != null) {
listener.changed(null, null, this);
}
// should not continue in depth first...
if (!openList.isEmpty()) {
// insert head as next position to pick up.
Position current = openList.removeFirst();
openList.add(current);
}
}
}
}
if (deepestEnd != null) {
t[deepestEnd.getX()][deepestEnd.getY()] |= GOAL;
}
}
public int getDepth() {
return depth;
}
public Position getDeepestEnd() {
return deepestEnd;
}
public int getDeepestPath() {
return deepest;
}
public boolean maxReached() {
return maxreached;
}
/**
* @param p Position
* @return true if newly added , false if already open.
**/
private boolean open(boolean first, Position p) {
int x = p.getX();
int y = p.getY();
if ((t[x][y] & OPEN) != OPEN) {
t[x][y] |= OPEN;
openList.addLast(p);
return true;
}
return false;
}
public final static boolean isFlagSet(short check, short flag) {
return ((check & flag) == flag);
}
public final short getCell(Position p) {
return t[p.getX()][p.getY()];
}
public final void updateCell(Position p, short flags) {
t[p.getX()][p.getY()] |= flags;
}
public final static short getReverseDirection(int index) {
return AllDirections[(index + 2) % 4];
}
/**
* return direction to use to be closer to 'to' from 'from'
*/
public final static short getDirection(Position from, Position to) {
short pointingdirection = DIRECTION;
if (from.equals(to)) {
return pointingdirection;
}
if (from.getX() < to.getX()) {
pointingdirection |= RIGHT;
} else if (from.getX() > to.getX()) {
pointingdirection |= LEFT;
}
if (from.getY() < to.getY()) {
pointingdirection |= DOWN;
} else if (from.getY() > to.getY()) {
pointingdirection |= UP;
}
return pointingdirection;
}
/**
* resolve this labrynth using internal representation
* initial (x,y) is exit, will return list of positions from start (0,0) to end (x,y)
**/
public LinkedList<DirectionPosition> resolve(int x, int y, MazeResolutionListener rlistener) {
long safeguard = width * height;
int newx = 0;
int newy = 0;
resetResolving();
// list of alternate paths
LinkedList<LinkedList<DirectionPosition>> altpath = new LinkedList<>();
// list of positions from start to end
LinkedList<DirectionPosition> backpath = new LinkedList<DirectionPosition>();
// position that point to (x,y).
DirectionPosition found = new DirectionPosition((short) 0, new Position(x, y));
// entry
Position entry = new Position(0, 0);
while (!found.getPosition().equals(entry)) {
Position last = found.getPosition();
backpath.addFirst(found);
found = null;
// should find from all adjacent cells (directions) one that point to this.
{
// didx is index of four cell adjacent to this (x,y)
for (int didx = 0; didx < 4; didx++) {
int delta = 0;
short direction = AllDirections[didx];
short reversedirection = getReverseDirection(didx);
short pointingdirection = DIRECTION;
if (isFlagSet(direction, POSITIVE)) {
delta = 1;
pointingdirection |= NEGATIVE;
} else {
delta = -1;
pointingdirection |= POSITIVE;
}
if (isFlagSet(direction, HORIZONTAL)) {
newx = last.getX() + delta;
newy = last.getY();
pointingdirection |= HORIZONTAL;
} else {
newy = last.getY() + delta;
newx = last.getX();
pointingdirection |= VERTICAL;
}
// internal GUARD.
if (!isFlagSet(reversedirection, pointingdirection)) {
System.out.println("[FATAL] Internal ERROR. Please check AllDirections order "
+ (reversedirection & pointingdirection) + " " + pointingdirection);
return backpath;
}
Position p = new Position(newx, newy);
if ((newx >= 0) && (newy >= 0) && (newx < width) && (newy < height)) {
if (isFlagSet(getCell(p), reversedirection)) {
if (found != null) {
// there is already a potential solution in adjacent cell of last.
System.out.println("alternate " + p + " from " + last + "/" + safeguard);
// could be a unique parent of two paths...
// but search from other entry/exits than generated
// from
// ie entry(0,0) exit(width-1,height-1) not yet
// implemented.
{
if (!isFlagSet(getCell(p), SOLVED)) {
LinkedList<DirectionPosition> cp = new LinkedList<DirectionPosition>(backpath);
DirectionPosition altfound = new DirectionPosition(reversedirection, p);
cp.addFirst(altfound);
altpath.addLast(cp);
rlistener.notifySearchError("record alternate path " + p.toString());
} else {
// this was already solved, might be a loop.
if (rlistener != null) {
rlistener.notifySearchError("Loop " + last.toString() + " has two parents " + found.toString() + " "
+ p.toString());
}
// continue;
}
}
} else {
if (!isFlagSet(getCell(p), SOLVED)) {
// this is first potential solution in adjacent cell of last.
System.out.println("check " + p + " from " + last + "/" + safeguard);
found = new DirectionPosition(reversedirection, p);
if (rlistener != null) {
rlistener.notifySearch(found);
}
} else {
// was already solved.
System.out.println("already solved " + p + " from " + last + "/" + safeguard);
}
}
// support multiple pathes
} else {
System.out.println("not reachable " + p + " from " + last + "/" + safeguard);
}
} else {
System.out.println("p outofbounds " + p + "/" + safeguard);
}
}
if (found == null) {
if (!altpath.isEmpty()) {
// new possible backpath
backpath = altpath.removeFirst();
found = backpath.removeFirst();
if (rlistener != null) {
rlistener.notifySearchError("try alternate path " + found.toString());
rlistener.notifySearch(found);
}
}
}
}
if (found == null) {
if (!altpath.isEmpty()) {
rlistener.notifySearchError("No path found BUT ALTPATH !");
}
rlistener.notifySearchError("No path found !");
break;
}
// System.out.println(found);
if (isFlagSet(getCell(found.getPosition()), SOLVED)) {
System.out.println("[INFO] position already solved" + found.toString() + " *length:" + backpath.size());
} else {
updateCell(found.getPosition(), SOLVED);
}
safeguard--;
if (safeguard < 0) {
rlistener.notifySearchError("Path too long ( or long overflow ) for width*height:" + (width * height) + " length:" + backpath.size());
break;
}
}
if (rlistener != null) {
rlistener.notifyCompletion(backpath);
}
return backpath;
}
private final void closePosition(int x, int y) {
t[x][y] &= ~OPEN;
t[x][y] |= CLOSED;
}
/**
* One step in Maze generation process
* get last element in open list and explore one random direction with it.
*
* @returns whether process closed current node.
**/
public boolean step() {
boolean complete = false;
Position current = null;
synchronized (coherentLock) {
if (!openList.isEmpty()) {
// last : in depth before.
current = openList.getLast();
} else {
return true;
}
if (current != null) {
int x = current.getX();
int y = current.getY();
// should find all free positions...
ArrayList<Short> freeDirection = new ArrayList<Short>();
for (short direction : AllDirections) {
int delta = 0;
int newx = -1;
int newy = -1;
if ((direction & POSITIVE) == POSITIVE) {
delta = 1;
} else {
delta = -1;
}
if ((direction & HORIZONTAL) == HORIZONTAL) {
newx = x + delta;
newy = y;
} else {
newy = y + delta;
newx = x;
}
if ((newx >= 0) && (newy >= 0) && (newx < width) && (newy < height)) {
if ((t[newx][newy]) == CLEAR) {
freeDirection.add(Short.valueOf(direction));
}
}
}
if (!freeDirection.isEmpty()) {
// control random using our own pseudorandom
short direction = 0;
if (freeDirection.size() > 1) {
direction = freeDirection.get(random.nextInt(freeDirection.size()));
} else {
direction = freeDirection.get(0);
Position last = openList.removeLast();
if (last != current) {
// GUARD, should not happen ( or multi-thread access
// to model error )
System.err.println("INTERNAL ERROR 3");
return false;
}
}
int delta = 0;
int newx = -1;
int newy = -1;
if ((direction & POSITIVE) == POSITIVE) {
delta = 1;
} else {
delta = -1;
}
if ((direction & HORIZONTAL) == HORIZONTAL) {
newx = x + delta;
newy = y;
} else {
newy = y + delta;
newx = x;
}
Position target = new Position(newx, newy, current.getDepth() + 1);
open(false, target);
if ((t[x][y] & DIRECTION) == DIRECTION) {
t[x][y] |= direction;
} else {
t[x][y] = direction;
} // not a 'direction' ... is it necessary to check ?
if (freeDirection.size() > 1) {
// keep it open at the very same place, previous open
// did add another node to inspect.
return false;
}
// else this was the unique direction , object already
// removed ( since if we try to remove it now it is not the
// last )
// can proceed to close
} else {
// no free direction remaining => closing
Position last = openList.removeLast();
if (last != current) {
// GUARD, should not happen.
System.err.println("INTERNAL ERROR 3");
return false;
}
}
complete = true;
closePosition(x, y);
final int currentdepth = current.getDepth();
if (currentdepth > deepest) {
deepest = currentdepth;
deepestEnd = current;
}
} // current != null;
} // synchronized
return complete;
}
public short getWalls(int x, int y) {
short walls = 0;
for (short direction : AllDirections) {
if (hasWallInDirection(x, y, direction)) {
walls |= (direction >> FLAGLENGTH);
}
}
return walls;
}
public short getPath(int x, int y) {
short path = 0;
if ((x < width) && (y < height)) {
path = t[x][y];
}
return path;
}
/**
* is there a wall in that direction ?
**/
public boolean hasWallInDirection(int x, int y, short direction) {
int newx = 0;
int newy = 0;
int delta = 0;
// best way to find reversedirection ?
int reversedirection = 0;
// is this direction on the path ? yes => no wall
if ((t[x][y] & direction) == direction) {
return false;
}
// is adjacent tile in direction pointing in reverse direction ? yes =>
// no wall
if ((direction & POSITIVE) == POSITIVE) {
delta = 1;
} else {
delta = -1;
}
if ((direction & HORIZONTAL) == HORIZONTAL) {
newx = x + delta;
newy = y;
reversedirection = (direction == RIGHT) ? LEFT : RIGHT;
} else {
newy = y + delta;
newx = x;
reversedirection = (direction == UP) ? DOWN : UP;
}
if ((newx >= 0) && (newy >= 0) && (newx < width) && (newy < height)) {
return !isFlagSet(t[newx][newy], (short) reversedirection);
} else {
// outside boundaries.
// TODO CHECK exits.
return true;
}
}
public void streamOut(String pFormat, OutputStream pOut) throws IOException {
if ((pFormat == null) || (pFormat.equals("raw"))) {
// first raw format, not smart.
DataOutputStream dataOut = new DataOutputStream(pOut);
// should dump this to stream.
dataOut.write(new byte[]{(byte) 'L', (byte) 'A', (byte) 'B', (byte) '0'});
dataOut.writeInt(getWidth());
dataOut.writeInt(getHeight());
dataOut.flush();
for (int y = 0; y < getHeight(); y++) {
for (int x = 0; x < getWidth(); x++) {
dataOut.writeShort(t[x][y]);
}
}
dataOut.flush();
} else {
throw new IOException("Format " + pFormat + " Not yet implemented.");
}
}
private void streamIn(String pFormat, InputStream pIn) throws IOException {
throw new IOException("Use correct constructor.");
}
private void parseInputStream(String pFormat, InputStream pIn) throws IOException {
if ((pFormat == null) || (pFormat.equals("raw"))) {
// maxdepth is unset then unmodified
byte[] header = new byte[4];
DataInputStream in = new DataInputStream(pIn);
in.read(header);
int rwidth = in.readInt();
int rheight = in.readInt();
if ((rwidth > 0) && (rheight > 0)) {
width = rwidth;
height = rheight;
random = null;
// SHOULD CHECK max width and max height...
// CLEAR == 0 and array is initialized with 0s
t = new short[width][height];
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
t[x][y] = in.readShort();
}
}
} else {
throw new IOException("Invalid header for width and height");
}
// should be at end of stream ? Not necessary can stream multiple
// labs ( or tiling ).
} else {
throw new IOException("Format " + pFormat + " Not yet implemented.");
}
}
}